Discrete mappings with an explicit discrete Lyapunov function related to integrable mappings

نویسندگان

  • Hironori Inoue
  • Daisuke Takahashi
چکیده

We propose discrete mappings of second order that have a discrete analogue of Lyapunov function. The mappings are extensions of the integrable Quispel-RobertsThompson (QRT) mapping, and a discrete Lyapunov function of the mappings is identical to an explicit conserved quantity of the QRT mapping. Moreover we can obtain a differential and an ultradiscrete limit of the mappings preserving the existence of Lyapunov function. We also give applications of a mapping with an adjusted parameter, a probabilistic mapping and coupled mappings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrable mappings derived from the ∆∆RsG equation

In this paper we consider the integrability of the mappings derived from the double discrete related sine-Gordon (∆∆RsG) equation, which we recently introduced in the paper Higher dimensional integrable mappings, under an appropriate periodicity condition.

متن کامل

Integrability and Fusion Algebra for Quantum Mappings

We apply the fusion procedure to a quantum Yang-Baxter algebra associated with time-discrete integrable systems, notably integrable quantum mappings. We present a general construction of higher-order quantum invariants for these systems. As an important class of examples, we present the Yang-Baxter structure of the Gel’fand-Dikii mapping hierarchy, that we have introduced in previous papers, to...

متن کامل

Singularity Confinement and Algebraic Integrability

Two important notions of integrability for discrete mappings are algebraic integrability and singularity confinement, have been used for discrete mappings. Algebraic integrability is related to the existence of sufficiently many conserved quantities whereas singularity confinement is associated with the local analysis of singularities. In this paper, the relationship between these two notions i...

متن کامل

Integrable quantum mappings.

We discuss the canonical structure of a class of integrable quantum mappings, i.e. iterative canonical transformations that can be interpreted as a discrete dynamical system. As particular examples we consider quantum map-pings associated with the lattice analogues of the KdV and MKdV equations. These mappings possess a non-ultralocal quantum Yang-Baxter structure leading to the existence of co...

متن کامل

Integrable Quantum Mappings and Quantization Aspects of Integrable Discrete-time Systems

We study a quantum Yang-Baxter structure associated with non-ultralocal lattice models. We discuss the canonical structure of a class of integrable quantum mappings, i.e. canonical transformations preserving the basic commutation relations. As a particular class of solutions we present two examples of quantum mappings associated with the lattice analogues of the KdV and MKdV equations, together...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006